Jumat, 08 Maret 2013

Modul 1 - ENERGI FOSSIL


MATERI KULIAH SUMBER DAYA ENERGI,
Bahan bakar fosil

Bahan bakar fosil atau bahan bakar mineral, adalah sumber daya alam yang mengandung hidrokarbon seperti batu bara, petroleum, dan gas alam. Penggunaan bahan bakar fosil ini telah menggerakan pengembangan industri dan menggantikan kincir angin, tenaga air, dan juga pembakaran kayu atau peat untuk panas.

Ketika menghasilkan listrik, energi dari pembakaran bahan bakar fosil seringkali digunakan untuk menggerakkan turbin. Generator tua seringkali menggunakan uap yang dihasilkan dari pembakaran untuk memutar turbin, tetapi di pembangkit listrik baru gas dari pembakaran digunakan untuk memutar turbin gas secara langsung.


Batubara sebagai salah satu contoh bahan bakar fosil
Pembakaran bahan bakar fosil oleh manusia merupakan sumber utama dari karbon dioksida yang merupakan salah satu gas rumah kaca yang dipercayai menyebabkan pemanasan global. Sejumlah kecil bahan bakar hidrokarbon adalah bahan bakar bio yang diperoleh dari karbon dioksida di atmosfer dan oleh karena itu tidak menambah karbon dioksida di udara.










Hidrokarbon

Model tiruan dari molekul metana, CH4. Metana merupakan salah satu contoh hidrokarbon yang masuk dalam kategori alkana, hanya mempunyai 1 jenis ikatan saja.
Dalam bidang kimia, hidrokarbon adalah sebuah senyawa yang terdiri dari unsur atom karbon (C) dan atom hidrogen (H). Seluruh hidrokarbon memiliki rantai karbon dan atom-atom hidrogen yang berikatan dengan rantai tersebut. Istilah tersebut digunakan juga sebagai pengertian dari hidrokarbon alifatik.
Sebagai contoh, metana (gas rawa) adalah hidrokarbon dengan satu atom karbon dan empat atom hidrogen: CH4. Etana adalah hidrokarbon (lebih terperinci, sebuah alkana) yang terdiri dari dua atom karbon bersatu dengan sebuah ikatan tunggal, masing-masing mengikat tiga atom karbon: C2H6. Propana memiliki tiga atom C (C3H8) dan seterusnya (CnH2·n+2).

Tipe-tipe hidrokarbon

Klasifikasi hidrokarbon yang dikelompokkan oleh tatanama organik adalah:
  1. Hidrokarbon jenuh/tersaturasi (alkana) adalah hidrokarbon yang paling sederhana. Hidrokarbon ini seluruhnya terdiri dari ikatan tunggal dan terikat dengan hidrogen. Rumus umum untuk hidrokarbon tersaturasi adalah CnH2n+2.[1] Hidrokarbon jenuh merupakan komposisi utama pada bahan bakar fosil dan ditemukan dalam bentuk rantai lurus maupun bercabang. Hidrokarbon dengan rumus molekul sama tapi rumus strukturnya berbeda dinamakan isomer struktur.[2]
  2. Hidrokarbon tak jenuh/tak tersaturasi adalah hidrokarbon yang memiliki satu atau lebih ikatan rangkap, baik rangkap dua maupun rangkap tiga. Hidrokarbon yang mempunyai ikatan rangkap dua disebut dengan alkena, dengan rumus umum CnH2n.[3] Hidrokarbon yang mempunyai ikatan rangkap tiga disebut alkuna, dengan rumus umum CnH2n-2.[4]
  3. Sikloalkana adalah hidrokarbon yang mengandung satu atau lebih cincin karbon. Rumus umum untuk hidrokarbon jenuh dengan 1 cincin adalah CnH2n.[2]
  4. Hidrokarbon aromatik, juga dikenal dengan arena, adalah hidrokarbon yang paling tidak mempunyai satu cincin aromatik.
Hidrokarbon dapat berbentuk gas (contohnya metana dan propana), cairan (contohnya heksana dan benzena), lilin atau padatan dengan titik didih rendah (contohnya paraffin wax dan naftalena) atau polimer (contohnya polietilena, polipropilena dan polistirena).

Ciri-ciri umum

Karena struktur molekulnya berbeda, maka rumus empiris antara hidrokarbon pun juga berbeda: jumlah hidrokarbon yang diikat pada alkena dan alkuna pasti lebih sedikit karena atom karbonnya berikatan rangkap.
Kemampuan hidrokarbon untuk berikatan dengan dirinya sendiri disebut dengan katenasi, dan menyebabkan hidrokarbon bisa membentuk senyawa-senyawa yang lebih kompleks, seperti sikloheksana atau arena seperti benzena. Kemampuan ini didapat karena karakteristik ikatan diantara atom karbon bersifat non-polar.
Sesuai dengan teori ikatan valensi, atom karbon harus memenuhi aturan "4-hidrogen" yang menyatakan jumlah atom maksimum yang dapat berikatan dengan karbon, karena karbon mempunyai 4 elektron valensi. Dilihat dari elektron valensi ini, maka karbon mempunyai 4 elektron yang bisa membentuk ikatan kovalen atau ikatan dativ.
Hidrokarbon bersifat hidrofobik dan termasuk dalam lipid.
Beberapa hidrokarbon tersedia melimpah di tata surya. Danau berisi metana dan etana cair telah ditemukan pada Titan, satelit alam terbesar Saturnus, seperti dinyatakan oleh Misi Cassini-Huygens.

Hidrokarbon sederhana dan variasinya

Penggunaan

Hidrokarbon adalah salah satu sumber energi paling penting di bumi. Penggunaan yang utama adalah sebagai sumber bahan bakar. Dalam bentuk padat, hidrokarbon adalah salah satu komposisi pembentuk aspal.
Hidrokarbon dulu juga pernah digunakan untuk pembuatan klorofluorokarbon, zat yang digunakan sebagai propelan pada semprotan nyamuk. Saat ini klorofluorokarbon tidak lagi digunakan karena memiliki efek buruk terhadap lapisan ozon.
Metana dan etana berbentuk gas dalam suhu ruangan dan tidak mudah dicairkan dengan tekanan begitu saja. Propana lebih mudah untuk dicairkan, dan biasanya dijual di tabung-tabung dalam bentuk cair. Butana sangat mudah dicairkan, sehingga lebih aman dan sering digunakan untuk pemantik rokok. Pentana berbentuk cairan bening pada suhu ruangan, biasanya digunakan di industri sebagai pelarut wax dan gemuk. Heksana biasanya juga digunakan sebagai pelarut kimia dan termasuk dalam komposisi bensin.
Heksana, heptana, oktana, nonana, dekana, termasuk dengan alkena dan beberapa sikloalkana merupakan komponen penting pada bensin, nafta, bahan bakar jet, dan pelarut industri. Dengan bertambahnya atom karbon, maka hidrokarbon yang berbentuk linear akan memiliki sifat viskositas dan titik didih lebih tinggi, dengan warna lebih gelap.

Pembakaran hidrokarbon

Artikel utama untuk bagian ini adalah: Pembakaran
Saat ini, hidrokarbon merupakan sumber energi listrik dan panas utama dunia karena energi yang dihasilkannya ketika dibakar.[7] Energi hidrokarbon ini biasanya sering langsung digunakan sebagai pemanas di rumah-rumah, dalam bentuk minyak maupun gas alam. Hidrokarbon dibakar dan panasnya digunakan untuk menguapkan air, yang nanti uapnya disebarkan ke seluruh ruangan. Prinsip yang hampir sama digunakan di pembangkit-pembangkit listrik.
Ciri-ciri umum dari hidrokarbon adalah menghasilkan uap, karbon dioksida, dan panas selama pembakaran, dan oksigen diperlukan agar reaksi pembakaran dapat berlangsung. Berikut ini adalah contoh reaksi pembakaran metana:
CH4 + 2 O2 → 2 H2O + CO2 + Energi
Jika udara miskin gas oksigen, maka akan terbentuk gas karbon monoksida (CO) dan air:
2 CH4 + 3 O2 → 2CO + 4H2O
Contoh lainnya, reaksi pembakaran propana:
C3H8 + 5 O2 → 4 H2O + 3 CO2 + Energi
CnH2n+2 + (3n+1)/2 O2 → (n+1) H2O + n CO2 + Energi
Reaksi pembakaran hidrokarbon termasuk reaksi kimia eksotermik.

Batu bara

Contoh batu bara
Batu bara atau batubara adalah salah satu bahan bakar fosil. Pengertian umumnya adalah batuan sedimen yang dapat terbakar, terbentuk dari endapan organik, utamanya adalah sisa-sisa tumbuhan dan terbentuk melalui proses pembatubaraan. Unsur-unsur utamanya terdiri dari karbon, hidrogen dan oksigen.
Batu bara juga adalah batuan organik yang memiliki sifat-sifat fisika dan kimia yang kompleks yang dapat ditemui dalam berbagai bentuk.
Analisis unsur memberikan rumus formula empiris seperti C137H97O9NS untuk bituminus dan C240H90O4NS untuk antrasit.

Batu bara secara umum

Umur batu bara

Pembentukan batu bara memerlukan kondisi-kondisi tertentu dan hanya terjadi pada era-era tertentu sepanjang sejarah geologi. Zaman Karbon, kira-kira 340 juta tahun yang lalu (jtl), adalah masa pembentukan batu bara yang paling produktif dimana hampir seluruh deposit batu bara (black coal) yang ekonomis di belahan bumi bagian utara terbentuk.

Pada Zaman Permian, kira-kira 270 jtl, juga terbentuk endapan-endapan batu bara yang ekonomis di belahan bumi bagian selatan, seperti Australia, dan berlangsung terus hingga ke Zaman Tersier (70 - 13 jtl) di berbagai belahan bumi lain.

Materi pembentuk batu bara

Hampir seluruh pembentuk batu bara berasal dari tumbuhan. Jenis-jenis tumbuhan pembentuk batu bara dan umurnya menurut Diessel (1981) adalah sebagai berikut:
*       Alga, dari Zaman Pre-kambrium hingga Ordovisium dan bersel tunggal. Sangat sedikit endapan batu bara dari perioda ini.
*       Silofita, dari Zaman Silur hingga Devon Tengah, merupakan turunan dari alga. Sedikit endapan batu bara dari perioda ini.
*       Pteridofita, umur Devon Atas hingga Karbon Atas. Materi utama pembentuk batu bara berumur Karbon di Eropa dan Amerika Utara. Tetumbuhan tanpa bunga dan biji, berkembang biak dengan spora dan tumbuh di iklim hangat.
*       Gimnospermae, kurun waktu mulai dari Zaman Permian hingga Kapur Tengah. Tumbuhan heteroseksual, biji terbungkus dalam buah, semisal pinus, mengandung kadar getah (resin) tinggi. Jenis Pteridospermae seperti gangamopteris dan glossopteris adalah penyusun utama batu bara Permian seperti di Australia, India dan Afrika.
*       Angiospermae, dari Zaman Kapur Atas hingga kini. Jenis tumbuhan modern, buah yang menutupi biji, jantan dan betina dalam satu bunga, kurang bergetah dibanding gimnospermae sehingga, secara umum, kurang dapat terawetkan.

Penambangan


Tambang batu bara di Bihar, India.
Penambangan batu bara adalah penambangan batu bara dari bumi. Batu bara digunakan sebagai bahan bakar. Batu bara juga dapat digunakan untuk membuat coke untuk pembuatan baja.
Tambang batu bara tertua terletak di Tower Colliery di Inggris.

Kelas dan jenis batu bara

Berdasarkan tingkat proses pembentukannya yang dikontrol oleh tekanan, panas dan waktu, batu bara umumnya dibagi dalam lima kelas: antrasit, bituminus, sub-bituminus, lignit dan gambut.
*       Antrasit adalah kelas batu bara tertinggi, dengan warna hitam berkilauan (luster) metalik, mengandung antara 86% - 98% unsur karbon (C) dengan kadar air kurang dari 8%.
*       Bituminus mengandung 68 - 86% unsur karbon (C) dan berkadar air 8-10% dari beratnya. Kelas batu bara yang paling banyak ditambang di Australia.
*       Sub-bituminus mengandung sedikit karbon dan banyak air, dan oleh karenanya menjadi sumber panas yang kurang efisien dibandingkan dengan bituminus.
*       Lignit atau batu bara coklat adalah batu bara yang sangat lunak yang mengandung air 35-75% dari beratnya.
*       Gambut, berpori dan memiliki kadar air di atas 75% serta nilai kalori yang paling rendah.

Pembentukan batu bara

Proses perubahan sisa-sisa tanaman menjadi gambut hingga batu bara disebut dengan istilah pembatu baraan (coalification). Secara ringkas ada 2 tahap proses yang terjadi, yakni:
*       Tahap Diagenetik atau Biokimia, dimulai pada saat material tanaman terdeposisi hingga lignit terbentuk. Agen utama yang berperan dalam proses perubahan ini adalah kadar air, tingkat oksidasi dan gangguan biologis yang dapat menyebabkan proses pembusukan (dekomposisi) dan kompaksi material organik serta membentuk gambut.
*       Tahap Malihan atau Geokimia, meliputi proses perubahan dari lignit menjadi bituminus dan akhirnya antrasit.

Batu bara di Indonesia

Di Indonesia, endapan batu bara yang bernilai ekonomis terdapat di cekungan Tersier, yang terletak di bagian barat Paparan Sunda (termasuk Pulau Sumatera dan Kalimantan), pada umumnya endapan batu bara ekonomis tersebut dapat dikelompokkan sebagai batu bara berumur Eosen atau sekitar Tersier Bawah, kira-kira 45 juta tahun yang lalu dan Miosen atau sekitar Tersier Atas, kira-kira 20 juta tahun yang lalu menurut Skala waktu geologi.
Batu bara ini terbentuk dari endapan gambut pada iklim purba sekitar khatulistiwa yang mirip dengan kondisi kini. Beberapa diantaranya tegolong kubah gambut yang terbentuk di atas muka air tanah rata-rata pada iklim basah sepanjang tahun. Dengan kata lain, kubah gambut ini terbentuk pada kondisi dimana mineral-mineral anorganik yang terbawa air dapat masuk ke dalam sistem dan membentuk lapisan batu bara yang berkadar abu dan sulfur rendah dan menebal secara lokal. Hal ini sangat umum dijumpai pada batu bara Miosen. Sebaliknya, endapan batu bara Eosen umumnya lebih tipis, berkadar abu dan sulfur tinggi. Kedua umur endapan batu bara ini terbentuk pada lingkungan lakustrin, dataran pantai atau delta, mirip dengan daerah pembentukan gambut yang terjadi saat ini di daerah timur Sumatera dan sebagian besar Kalimantan.

Endapan batu bara Eosen

Endapan ini terbentuk pada tatanan tektonik ekstensional yang dimulai sekitar Tersier Bawah atau Paleogen pada cekungan-cekungan sedimen di Sumatera dan Kalimantan.
Ekstensi berumur Eosen ini terjadi sepanjang tepian Paparan Sunda, dari sebelah barat Sulawesi, Kalimantan bagian timur, Laut Jawa hingga Sumatera. Dari batuan sedimen yang pernah ditemukan dapat diketahui bahwa pengendapan berlangsung mulai terjadi pada Eosen Tengah. Pemekaran Tersier Bawah yang terjadi pada Paparan Sunda ini ditafsirkan berada pada tatanan busur dalam, yang disebabkan terutama oleh gerak penunjaman Lempeng Indo-Australia. Lingkungan pengendapan mula-mula pada saat Paleogen itu non-marin, terutama fluviatil, kipas aluvial dan endapan danau yang dangkal.
Di Kalimantan bagian tenggara, pengendapan batu bara terjadi sekitar Eosen Tengah - Atas namun di Sumatera umurnya lebih muda, yakni Eosen Atas hingga Oligosen Bawah. Di Sumatera bagian tengah, endapan fluvial yang terjadi pada fase awal kemudian ditutupi oleh endapan danau (non-marin). Berbeda dengan yang terjadi di Kalimantan bagian tenggara dimana endapan fluvial kemudian ditutupi oleh lapisan batu bara yang terjadi pada dataran pantai yang kemudian ditutupi di atasnya secara transgresif oleh sedimen marin berumur Eosen Atas.
Endapan batu bara Eosen yang telah umum dikenal terjadi pada cekungan berikut: Pasir dan Asam-asam (Kalimantan Selatan dan Timur), Barito (Kalimantan Selatan), Kutai Atas (Kalimantan Tengah dan Timur), Melawi dan Ketungau (Kalimantan Barat), Tarakan (Kalimantan Timur), Ombilin (Sumatera Barat) dan Sumatera Tengah (Riau).
Dibawah ini adalah kualitas rata-rata dari beberapa endapan batu bara Eosen di Indonesia.
Tambang
Cekungan
Perusahaan
Kadar air total (%ar)
Kadar air inheren (%ad)
Kadar abu (%ad)
Zat terbang (%ad)
Belerang (%ad)
Nilai energi (kkal/kg)(ad)
Satui
Asam-asam
PT Arutmin Indonesia
10.00
7.00
8.00
41.50
0.80
6800
Senakin
Pasir
PT Arutmin Indonesia
9.00
4.00
15.00
39.50
0.70
6400
Petangis
Pasir
PT BHP Kendilo Coal
11.00
4.40
12.00
40.50
0.80
6700
Ombilin
Ombilin
PT Bukit Asam
12.00
6.50
<8.00
36.50
0.50 - 0.60
6900
Parambahan
Ombilin
PT Allied Indo Coal
4.00
-
10.00 (ar)
37.30 (ar)
0.50 (ar)
6900 (ar)
(ar) - as received, (ad) - air dried, Sumber: Indonesian Coal Mining Association, 1998

Endapan batu bara Miosen

Pada Miosen Awal, pemekaran regional Tersier Bawah - Tengah pada Paparan Sunda telah berakhir. Pada Kala Oligosen hingga Awal Miosen ini terjadi transgresi marin pada kawasan yang luas dimana terendapkan sedimen marin klastik yang tebal dan perselingan sekuen batugamping. Pengangkatan dan kompresi adalah kenampakan yang umum pada tektonik Neogen di Kalimantan maupun Sumatera. Endapan batu bara Miosen yang ekonomis terutama terdapat di Cekungan Kutai bagian bawah (Kalimantan Timur), Cekungan Barito (Kalimantan Selatan) dan Cekungan Sumatera bagian selatan. Batu bara Miosen juga secara ekonomis ditambang di Cekungan Bengkulu.
Batu bara ini umumnya terdeposisi pada lingkungan fluvial, delta dan dataran pantai yang mirip dengan daerah pembentukan gambut saat ini di Sumatera bagian timur. Ciri utama lainnya adalah kadar abu dan belerang yang rendah. Namun kebanyakan sumberdaya batu bara Miosen ini tergolong sub-bituminus atau lignit sehingga kurang ekonomis kecuali jika sangat tebal (PT Adaro) atau lokasi geografisnya menguntungkan. Namun batu bara Miosen di beberapa lokasi juga tergolong kelas yang tinggi seperti pada Cebakan Pinang dan Prima (PT KPC), endapan batu bara di sekitar hilir Sungai Mahakam, Kalimantan Timur dan beberapa lokasi di dekat Tanjungenim, Cekungan Sumatera bagian selatan.
Tabel dibawah ini menunjukan kualitas rata-rata dari beberapa endapan batu bara Miosen di Indonesia.
Tambang
Cekungan
Perusahaan
Kadar air total (%ar)
Kadar air inheren (%ad)
Kadar abu (%ad)
Zat terbang (%ad)
Belerang (%ad)
Nilai energi (kkal/kg)(ad)
Prima
Kutai
PT Kaltim Prima Coal
9.00
-
4.00
39.00
0.50
6800 (ar)
Pinang
Kutai
PT Kaltim Prima Coal
13.00
-
7.00
37.50
0.40
6200 (ar)
Roto South
Pasir
PT Kideco Jaya Agung
24.00
-
3.00
40.00
0.20
5200 (ar)
Binungan
Tarakan
PT Berau Coal
18.00
14.00
4.20
40.10
0.50
6100 (ad)
Lati
Tarakan
PT Berau Coal
24.60
16.00
4.30
37.80
0.90
5800 (ad)
Air Laya
Sumatera bagian selatan
PT Bukit Asam
24.00
-
5.30
34.60
0.49
5300 (ad)
Paringin
Barito
PT Adaro
24.00
18.00
4.00
40.00
0.10
5950 (ad)
(ar) - as received, (ad) - air dried, Sumber: Indonesian Coal Mining Association, 1998

Sumberdaya batu bara

Potensi sumberdaya batu bara di Indonesia sangat melimpah, terutama di Pulau Kalimantan dan Pulau Sumatera, sedangkan di daerah lainnya dapat dijumpai batu bara walaupun dalam jumlah kecil dan belum dapat ditentukan keekonomisannya, seperti di Jawa Barat, Jawa Tengah, Papua, dan Sulawesi.
Di Indonesia, batu bara merupakan bahan bakar utama selain solar (diesel fuel) yang telah umum digunakan pada banyak industri, dari segi ekonomis batu bara jauh lebih hemat dibandingkan solar, dengan pebandingan sebagai berikut: Solar Rp 0,74/kilokalori sedangkan batu bara hanya Rp 0,09/kilokalori, (berdasarkan harga solar industri Rp. 6.200/liter).
Dari segi kuantitas batu bara termasuk cadangan energi fosil terpenting bagi Indonesia. Jumlahnya sangat berlimpah, mencapai puluhan milyar ton. Jumlah ini sebenarnya cukup untuk memasok kebutuhan energi listrik hingga ratusan tahun ke depan. Sayangnya, Indonesia tidak mungkin membakar habis batu bara dan mengubahnya menjadi energis listrik melalui PLTU. Selain mengotori lingkungan melalui polutan CO2, SO2, NOx dan CxHy cara ini dinilai kurang efisien dan kurang memberi nilai tambah tinggi.
Batu bara sebaiknya tidak langsung dibakar, akan lebih bermakna dan efisien jika dikonversi menjadi migas sintetis, atau bahan petrokimia lain yang bernilai ekonomi tinggi. Dua cara yang dipertimbangkan dalam hal ini adalah likuifikasi (pencairan) dan gasifikasi (penyubliman) batu bara.
Membakar batu bara secara langsung (direct burning) telah dikembangkan teknologinya secara continue, yang bertujuan untuk mencapai efisiensi pembakaran yang maksimum, cara-cara pembakaran langsung seperti: fixed grate, chain grate, fluidized bed, pulverized, dan lain-lain, masing-masing mempunyai kelebihan dan kelemahannya.

Gasifikasi batu bara

Coal gasification adalah sebuah proses untuk mengubah batu bara padat menjadi gas batu bara yang mudah terbakar (combustible gases), setelah proses pemurnian gas-gas ini karbon monoksida (CO), karbon dioksida (CO2), hidrogen (H), metan (CH4), dan nitrogen (N2) – dapat digunakan sebagai bahan bakar. hanya menggunakan udara dan uap air sebagai reacting-gas kemudian menghasilkan water gas atau coal gas, gasifikasi secara nyata mempunyai tingkat emisi udara, kotoran padat dan limbah terendah.
Tetapi, batu bara bukanlah bahan bakar yang sempurna. Terikat di dalamnya adalah sulfur dan nitrogen, bila batu bara ini terbakar kotoran-kotoran ini akan dilepaskan ke udara, bila mengapung di udara zat kimia ini dapat menggabung dengan uap air (seperti contoh kabut) dan tetesan yang jatuh ke tanah seburuk bentuk asam sulfurik dan nitrit, disebut sebagai "hujan asam" “acid rain”. Disini juga ada noda mineral kecil, termasuk kotoran yang umum tercampur dengan batu bara, partikel kecil ini tidak terbakar dan membuat debu yang tertinggal di coal combustor, beberapa partikel kecil ini juga tertangkap di putaran combustion gases bersama dengan uap air, dari asap yang keluar dari cerobong beberapa partikel kecil ini adalah sangat kecil setara dengan rambut manusia.

Bagaimana membuat batu bara bersih

Ada beberapa cara. Contoh sulfur, sulfur adalah zat kimia kekuningan yang ada sedikit di batu bara, pada beberapa batu bara yang ditemukan di Ohio, Pennsylvania, West Virginia dan eastern states lainnya, sulfur terdiri dari 3 sampai 10 % dari berat batu bara, beberapa batu bara yang ditemukan di Wyoming, Montana dan negara-negara bagian sebelah barat lainnya sulfur hanya sekitar 1/100ths (lebih kecil dari 1%) dari berat batu bara. Penting bahwa sebagian besar sulfur ini dibuang sbelum mencapai cerobong asap.
Satu cara untuk membersihkan batu bara adalah dengan cara mudah memecah batu bara ke bongkahan yang lebih kecil dan mencucinya. Beberapa sulfur yang ada sebagai bintik kecil di batu bara disebut sebagai "pyritic sulfur " karena ini dikombinasikan dengan besi menjadi bentuk iron pyrite, selain itu dikenal sebagai "fool's gold” dapat dipisahkan dari batu bara. Secara khusus pada proses satu kali, bongkahan batu bara dimasukkan ke dalam tangki besar yang terisi air , atu bara mengambang ke permukaan ketika kotoran sulfur tenggelam. Fasilitas pencucian ini dinamakan "coal preparation plants" yang membersihkan batu bara dari pengotor-pengotornya.
Tidak semua sulfur bisa dibersihkan dengan cara ini, bagaimanapun sulfur pada batu bara adalah secara kimia benar-benar terikat dengan molekul karbonnya, tipe sulfur ini disebut "organic sulfur," dan pencucian tak akan menghilangkannya. Beberapa proses telah dicoba untuk mencamur batu bara dengan bahan kimia yang membebaskan sulfur pergi dari molekul batu bara, tetapi kebanyakan proses ini sudah terbukti terlalu mahal, ilmuan masih bekerja untuk mengurangi biaya dari prose pencucian kimia ini.
Kebanyakan pembangkit tenaga listrik modern dan semua fasilitas yang dibangun setelah 1978 — telahdiwajibkan untuk mempunyai alat khusus yang dipasang untuk membuang sulfur dari gas hasil pembakaran batu bara sebelum gas ini naik menuju cerobong asap. Alat ini sebenarnya adalah "flue gas desulfurization units," tetapi banyak orang menyebutnya "scrubbers" — karena mereka men-scrub (menggosok) sulfur keluar dari asap yang dikeluarkan oleh tungku pembakar batu bara.

Membuang NOx dari batu bara

Nitrogen secara umum adalah bagian yang besar dari pada udara yang dihirup, pada kenyataannya 80% dari udara adalah nitrogen, secara normal atom-atom nitrogen mengambang terikat satu sama lainnya seperti pasangan kimia, tetapi ketika udara dipanaskan seperti pada nyala api boiler (3000 F=1648 C), atom nitrogen ini terpecah dan terikat dengan oksigen, bentuk ini sebagai nitrogen oksida atau kadang kala itu disebut sebagai NOx. NOx juga dapat dibentuk dari atom nitrogen yang terjebak di dalam batu bara.
Di udara, NOx adalah polutan yang dapat menyebabkan kabut coklat yang kabur yang kadang kala terlihat di seputar kota besar, juga sebagai polusi yang membentuk “acid rain” (hujan asam), dan dapat membantu terbentuknya sesuatu yang disebut “ground level ozone”, tipe lain dari pada polusi yang dapat membuat kotornya udara.
Salah satu cara terbaik untuk mengurangi NOx adalah menghindari dari bentukan asalnya, beberapa cara telah ditemukan untuk membakar batubara di pemabakar dimana ada lebih banyak bahan bakar dari pada udara di ruang pembakaran yang terpanas. Di bawah kondisi ini kebanyakan oksigen terkombinasikan dengan bahan bakar daripada dengan nitrogen. Campuran pembakaran kemudian dikirim ke ruang pembakaran yang kedua dimana terdapat proses yang mirip berulang-ulang sampai semua bahan bakar habis terbakar. Konsep ini disebut "staged combustion" karena batu bara dibakar secara bertahap. Kadang disebut juga sebagai "low-NOx burners" dan telah dikembangkan sehingga dapat mengurangi kangdungan Nox yang terlepas di uadara lebih dari separuh. Ada juga teknologi baru yang bekerja seperti "scubbers" yang membersihkan NOX dari flue gases (asap) dari boiler batu bara. Beberapa dari alat ini menggunakan bahan kimia khusus yang disebut katalis yang mengurai bagian NOx menjadi gas yang tidak berpolusi, walaupun alat ini lebih mahal dari "low-NOx burners," namun dapat menekan lebih dari 90% polusi Nox.

Cadangan batu bara dunia


Daerah batu bara di Amerika Serikat
Pada tahun 1996 diestimasikan terdapat sekitar satu exagram (1 × 1015 kg atau 1 trilyun ton) total batu bara yang dapat ditambang menggunakan teknologi tambang saat ini, diperkirakan setengahnya merupakan batu bara keras. Nilai energi dari semua batu bara dunia adalah 290 zettajoules.  Dengan konsumsi global saat ini adalah 15 terawatt, terdapat cukup batu bara untuk menyediakan energi bagi seluruh dunia untuk 600 tahun.
British Petroleum, pada Laporan Tahunan 2006, memperkirakan pada akhir 2005, terdapat 909.064 juta ton cadangan batu bara dunia yang terbukti (9,236 × 1014 kg), atau cukup untuk 155 tahun (cadangan ke rasio produksi). Angka ini hanya cadangan yang diklasifikasikan terbukti, program bor eksplorasi oleh perusahaan tambang, terutama sekali daerah yang di bawah eksplorasi, terus memberikan cadangan baru.
Departemen Energi Amerika Serikat memperkirakan cadangan batu bara di Amerika Serikat sekitar 1.081.279 juta ton (9,81 × 1014 kg), yang setara dengan 4.786 BBOE (billion barrels of oil equivalent).
Cadangan batu bara dunia pada akhir 2005 (dalam juta ton)
Negara
Bituminus (termasuk antrasit)
Sub-bituminus
Lignit
TOTAL
115.891
101.021
33.082
249.994
49.088
97.472
10.450
157.010
62.200
33.700
18.600
114.500
82.396
2.000
84.396
42.550
1.840
37.700
82.090
23.000
43.000
66.000
49.520
49.520
16.274
15.946
1.933
34.153
31.000
3.000
34.000
20.300
1.860
22.160
64
1.460
14.732
16.256
11.929
11.929
6.267
381
6.648
3.471
871
2.236
6.578
2.114
3.414
150
5.678
790
1.430
3.150
5.370
4.300
4.300
1.000
3.000
4.000
278
761
2.650
3.689
2.874
2.874
13
233
2.465
2.711
2.265
2.265
1.710
1.710
1.000
500
1.500
1
35
1.421
1.457
1.268
1.268
860
300
51
1.211
31
1.150
1.181
80
1.017
1.097
960
100
1060
812
812
773
773
200
400
60
660
300
300
600
33
206
333
572
502
502
497
497
479
479
430
430
232
100
332
40
235
275
212
212
208
208
200
200
21
169
190
183
183
172
172
150
150
88
88
78
78
70
70
66
66
40
40
6
33
39
3
33
36
22
14
36
27
7
34
25
25
24
24
22
22
14
14
10
10
4
4
3
3
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
Negara pengekspor batu bara utama
Pengekspor batu bara berdasarkan negara dan tahun
(dalam juta ton)
Negara
238,1
247,6
43,0
48,0
78,7
74,9
41,0
55,7
16,4
16,3
27,7
28,8
103,4
95,5
57,8
65,9
200,8
131,4
Total
713,9
764,0


Minyak bumi


Cadangan minyak terbukti, 2009


Pompa minyak di pengeboran minyak dekat Lubbock, Texas.
Pengilangan minyak di Mina-Al-Ahmadi, Kuwait


Pompa minyak
Minyak Bumi (bahasa Inggris: petroleum, dari bahasa Latin petrus – karang dan oleum – minyak), dijuluki juga sebagai emas hitam, adalah cairan kental, berwarna coklat gelap, atau kehijauan yang mudah terbakar, yang berada di lapisan atas dari beberapa area di kerak bumi. Minyak Bumi terdiri dari campuran kompleks dari berbagai hidrokarbon, sebagian besar seri alkana, tetapi bervariasi dalam penampilan, komposisi, dan kemurniannya. Minyak Bumi diambil dari sumur minyak di pertambangan-pertambangan minyak. Lokasi sumur-sumur minyak ini didapatkan setelah melalui proses studi geologi, analisis sedimen, karakter dan struktur sumber, dan berbagai macam studi lainnya.[1][2] Setelah itu, minyak Bumi akan diproses di tempat pengilangan minyak dan dipisah-pisahkan hasilnya berdasarkan titik didihnya sehingga menghasilkan berbagai macam bahan bakar, mulai dari bensin dan minyak tanah sampai aspal dan berbagai reagen kimia yang dibutuhkan untuk membuat plastik dan obat-obatan.[3] Minyak Bumi digunakan untuk memproduksi berbagai macam barang dan material yang dibutuhkan manusia.[4]

Komposisi

Jika dilihat kasar, minyak Bumi hanya berisi minyak mentah saja, tapi dalam penggunaan sehari-hari ternyata juga digunakan dalam bentuk hidrokarbon padat, cair, dan gas lainnya. Pada kondisi temperatur dan tekanan standar, hidrokarbon yang ringan seperti metana, etana, propana, dan butana berbentuk gas yang mendidih pada -161.6 °C, -88.6 °C, -42 °C, dan -0.5 °C, berturut-turut (-258.9°, -127.5°, -43.6°, dan +31.1° F), sedangkan karbon yang lebih tinggi, mulai dari pentana ke atas berbentuk padatan atau cairan. Meskipun begitu, di sumber minyak di bawah tanah, proporsi gas, cairan, dan padatan tergantung dari kondisi permukaan dan diagram fase dari campuran minyak Bumi tersebut.
Sumur minyak sebagian besar menghasilkan minyak mentah, dan terkadang ada juga kandungan gas alam di dalamnya. Karena tekanan di permukaan Bumi lebih rendah daripada di bawah tanah, beberapa gas akan keluar dalam bentuk campuran. Sumur gas sebagian besar menghasilkan gas. Tapi, karena suhu dan tekanan di bawah tanah lebih besar daripada suhu di permukaan, maka gas yang keluar kadang-kadang juga mengandung hidrokarbon yang lebih besar, seperti pentana, heksana, dan heptana dalam wujud gas. Di permukaan, maka gas ini akan mengkondensasi sehingga berbentuk kondensat gas alam. Bentuk fisik kondensat ini mirip dengan bensin.
Persentase hidrokarbon ringan di dalam minyak mentah sangat bervariasi tergantung dari ladang minyak, kandungan maksimalnya bisa sampai 97% dari berat kotor dan paling minimal adalah 50%.
Jenis hidrokarbon yang terdapat pada minyak Bumi sebagian besar terdiri dari alkana, sikloalkana, dan berbagai macam jenis hidrokarbon aromatik, ditambah dengan sebagian kecil elemen-elemen lainnya seperti nitrogen, oksigen dan sulfur, ditambah beberapa jenis logam seperti besi, nikel, tembaga, dan vanadium. Jumlah komposisi molekul sangatlah beragam dari minyak yang satu ke minyak yang lain tapi persentase proporsi dari elemen kimianya dapat dilihat di bawah ini:[6]
Komposisi elemen berdasarkan berat
Elemen
Rentang persentase
Karbon
83 sampai 87%
Hidrogen
10 sampai 14%
Nitrogen
0.1 sampai 2%
Oksigen
0.05 sampai 1.5%
Sulfur
0.05 sampai 6.0%
Logam
< 0.1%
Ada 4 macam molekul hidrokarbon yang ada dalam minyak mentah. Persentase relatif setiap molekul berbeda-beda tiap lokasi minyaknya, sehingga menggambarkan ciri-ciri dari setiap minyak.
Komposisi molekul berdasarkan berat
Hidrokarbon
Rata-rata
Rentang
30%
15 sampai 60%
49%
30 sampai 60%
15%
3 sampai 30%
6%
sisa-sisa
Kebanyakan minyak mentah di dunia merupakan non-konvensional.
Penampakan fisik dari minyak Bumi sangatlah beragam tergantung dari komposisinya. Minyak Bumi biasanya berwarna hitam atau coklat gelap (meskipun warnanya juga bisa kekuningan, kemerahan, atau bahkan kehijauan). Pada sumur minyak biasanya ditemukan juga gas alam yang mempunyai massa jenis lebih ringan daripada minyak Bumi, sehingga biasanya keluar terlebih dahulu dibandingkan minyak. Dalam campuran itu, terdapat juga air asin, yang massa jenisnya lebih rendah sehingga berada di lapisan di bawah minyak. Minyak mentah juga dapat ditemukan dengan campuran dengan pasir dan minyak, seperti pada pasir minyak Athabasca di Kanada, yang biasanya merujuk pada bitumen mentah. Bitumen yang terdapat di Kanada memiliki karakteristik lengket, berwarna hitam, bentuknya seperti minyak mentah dalam wujud tar, sehingga sangat lengket dan berat dan harus dipanaskan terlebih dahulu agar larut dan bisa dialirkan. Venezuela juga mempunyai cadangan minyak dalam jumlah besar di pasir minyak Orinoco, meskipun jumlah hidrokarbon yang terkandung lebih cair daripada di Kanada. Jenis minyak ini disebut dengan minyak ekstra berat. Minyak yang terdapat dalam pasir minyak ini disebut dengan minyak tak konvensional untuk membedakannya dari minyak yang dapat diekstrak dengan metode tradisional biasa. Kanada dan Venezuela diperkirakan mempunyai 3,6 triliun barel (570×109 m3) bitumen dan minyak ekstra-berat ini, sekitar dua kali dari volume cadangan minyak konvensional dunia.
Minyak Bumi sebagian besar digunakan untuk memproduksi bensin dan minyak bakar, keduanya merupakan sumber "energi primer" utama.[10] 84% dari volume hidrokarbon yang terkandung dalam minyak Bumi diubah menjadi bahan bakar, yang di dalamnya termasuk dengan bensin, diesel, bahan bakar jet, dan elpiji.[11] Minyak Bumi yang tingkatannya lebih ringan akan menghasilkan minyak dengan kualitas terbaik, tapi karena cadangan minyak ringan dan menengah semakin hari semakin sedikit, maka tempat-tempat pengolahan minyak sekarang ini semakin meningkatkan pemrosesan minyak berat dan bitumen, diikuti dengan metode yang makin kompleks dan mahal untuk memproduksi minyak. Karena minyak Bumi tyang tingkatannya berat mengandung karbon terlalu banyak dan hidrogen terlalu sedikit, maka proses yang biasanya dipakai adalah mengurangi karbon atau menambahkan hidrogen ke dalam molekulnya. Untuk mengubah molekul yang panjang dan kompleks menjadi molekul yang lebih kecil dan sederhana, digunakan proses fluid catalytic cracking.
Karena mempunyai kepadatan energi yang tinggi, pengangkutan yang mudah, dan cadangan yang banyak, minyak Bumi telah menjadi sumber energi paling utama di dunia sejak pertengahan tahun 1950-an. Minyak Bumi juga digunakan sebagai bahan mentah dari banyak produk-produk kimia, farmasi, pelarut, pupuk, pestisida, dan plastik; dan sisa 16% lainnya yang tidak digunakan untuk produksi energi diubah menjadi material lainnya.
Cadangan minyak yang diketahui saat ini berkisar 190 km3 (1,2 triliun barrel) tanpa pasir minyak, atau 595 km3 (3,74 triliun barrel) jika pasir minyak ikut dihitung. Konsumsi minyak Bumi saat ini berkisar 84 juta barrel (13,4×106 m3) per harinya, atau 4.9 km3 per tahunnya. Dengan cadangan minyak yang ada sekarang, minyak Bumi masih bisa dipakai sampai 120 tahun lagi, jika konsumsi dunia diasumsikan tidak bertambah.
Beberapa ilmuwan menyatakan bahwa minyak adalah zat abiotik, yang berarti zat ini tidak berasal dari fosil tetapi berasal dari zat anorganik yang dihasilkan secara alami dalam perut Bumi. Namun, pandangan ini diragukan dalam lingkungan ilmiah.

Kimia


Oktana, hidrokarbon yang ditemukan pada bensin. Garis-garis melambangkan ikatan tunggal, bola hitam melambangkan karbon, sedangkan bola putih melambangkan hidrogen.
Minyak Bumi merupakan campuran dari berbagai macam hidrokarbon, jenis molekul yang paling sering ditemukan adalah alkana (baik yang rantai lurus maupun bercabang), sikloalkana, hidrokarbon aromatik, atau senyawa kompleks seperti aspaltena. Setiap minyak Bumi mempunyai keunikan molekulnya masing-masing, yang diketahui dari bentuk fisik dan ciri-ciri kimia, warna, dan viskositas.
Alkana, juga disebut dengan parafin, adalah hidrokarbon tersaturasi dengan rantai lurus atau bercabang yang molekulnya hanya mengandung unsur karbon dan hidrogen dengan rumus umum CnH2n+2. Pada umumnya minyak Bumi mengandung 5 sampai 40 atom karbon per molekulnya, meskipun molekul dengan jumlah karbon lebih sedikit/lebih banyak juga mungkin ada di dalam campuran tersebut.
Alkana dari pentana (C5H12) sampai oktana (C8H18) akan disuling menjadi bensin, sedangkan alkana jenis nonana (C9H20) sampai heksadekana (C16H34) akan disuling menjadi diesel, kerosene dan bahan bakar jet). Alkana dengan atom karbon 16 atau lebih akan disuling menjadi oli/pelumas. Alkana dengan jumlah atom karbon lebih besar lagi, misalnya parafin wax mempunyai 25 atom karbon, dan aspal mempunyai atom karbon lebih dari 35. Alkana dengan jumlah atom karbon 1 sampai 4 akan berbentuk gas dalam suhu ruangan, dan dijual sebagai elpiji (LPG). Di musim dingin, butana (C4H10), digunakan sebagai bahan campuran pada bensin, karena tekanan uap butana yang tinggi akan membantu mesin menyala pada musim dingin. Penggunaan alkana yang lain adalah sebagai pemantik rokok. Di beberapa negara, propana (C3H8) dapat dicairkan dibawah tekanan sedang, dan digunakan masyarakat sebagai bahan bakar transportasi maupun memasak.
Sikloalkana, juga dikenal dengan nama naptena, adalah hidrokarbon tersaturasi yang mempunyai satu atau lebih ikatan rangkap pada karbonnya, dengan rumus umum CnH2n. Sikloalkana memiliki ciri-ciri yang mirip dengan alkana tapi memiliki titik didih yang lebih tinggi.
Hidrokarbon aromatik adalah hidrokarbon tidak tersaturasi yang memiliki satu atau lebih cincin planar karbon-6 yang disebut cincin benzena, dimana atom hidrogen akan berikatan dengan atom karbon dengan rumus umum CnHn. Hidrokarbon seperti ini jika dibakar maka akan menimbulkan asap hitam pekat. Beberapa bersifat karsinogenik.
Semua jenis molekul yang berbeda-beda di atas dipisahkan dengan distilasi fraksional di tempat pengilangan minyak untuk menghasilkan bensin, bahan bakar jet, kerosin, dan hidrokarbon lainnya. Contohnya adalah 2,2,4-Trimetilpentana (isooktana), dipakai sebagai campuran utama dalam bensin, mempunyai rumus kimia C8H18 dan bereaksi dengan oksigen secara eksotermik:[14]
2 C8H18(l) + 25 O2(g) → 16 CO2(g) + 18 H2O(g) + 10.86 MJ/mol (oktana)
Jumlah dari masing-masing molekul pada minyak Bumi dapat diteliti di laboratorium. Molekul-molekul ini biasanya akan diekstrak di sebuah pelarut, kemudian akan dipisahkan di kromatografi gas, dan kemudian bisa dideteksi dengan detektor yang cocok.
Pembakaran yang tidak sempurna dari minyak Bumi atau produk hasil olahannya akan menyebabkan produk sampingan yang beracun. Misalnya, terlalu sedikit oksigen yang bercampur maka akan menghasilkan karbon monoksida. Karena suhu dan tekanan yang tinggi di dalam mesin kendaraan, maka gas buang yang dihasilkan oleh mesin biasanya juga mengandung molekul nitrogen oksida yang dapat menimbulkan asbut.

Persamaan empiris untuk ciri-ciri termal pada produk hasil olahan minyak Bumi

Panas pembakaran

Pada volume yang konstan maka panas pembakaran dari produk minyak Bumi dapat diperkirakan dengan rumus:
Q_v = 12,400 - 2,100d^2.
dengan Q_vdalam kal/gram dan d adalah gravitasi khusus pada suhu 60 °F (16 °C).

Konduktivitas termal

Konduktivitas termal dari cairan-cairan yang berasal dari minyak Bumi dapat dirumuskan sebagai berikut:
K = \frac{0.813}{d}[1-0.0203(t-32)]0.547
Satuan K adalah BTU hr−1ft−2 , t diukur dalam °F dan d adalah gravitasi khusus pada suhu 60 °F (16 °C).

Penggunaan

Struktur kimia dari minya Bumi sangatlah heterogen, terdiri dari banyak rantai hidrokarbon dengan panjang yang berbeda-beda. Maka dari itu, minyak Bumi dibawa ke tempat pengilangan minyak sehingga senyawa-senyawa hidrokarbon ini bisa dipisahkan dengan teknik distilasi dan proses kimia lainnya. Hasil penyulingan minyak inilah yang digunakan manusia untuk berbagai macam kebutuhan.

Bahan bakar

Jenis produk paling umum dari penyulingan minyak Bumi adalah bahan bakar. Jenis-jenis bahan bakar itu antara lain (dilihat dari titik didihnya):[16]
Hasil penyulingan minyak Bumi
Nama bahan bakar
Titik didih oC
Elpiji (LPG)
-40
-12 sampai -1
-1 sampai 180
150 sampai 205
205 sampai 260
205 sampai 290
260 sampai 315

Produk turunan lainnya

Beberapa produk hasil olahan hidrokarbon dapat dicampur dengan senyawa non-hidrokarbon untuk membentuk senyawa lainnya:
*         Alkena (olefin), dapat diproduksi menjadi plastik atau senyawa lain.
*         Pelumas (oli mesin dan gemuk).
*         Wax, digunakan dalam pengepakan makanan beku.
*         Sulfur atau Asam sulfat. Merupakan senyawa penting dalam industri.
*         Tar.
*         Aspal.
*         Kokas minyak Bumi, digunakan sebagai bahan bakar padat.
*         Parafin wax.
*         Petrokimia aromatik, digunakan sebagai campuran pada produksi bahan-bahan kimia lainnya.

Di Indonesia

Di Indonesia, minyak Bumi yang diolah banyak digunakan sebagai Bahan bakar minyak atau BBM, yang merupakan salah satu jenis bahan bakar yang digunakan secara luas di era industrialisasi.
Ada beberapa jenis BBM yang dikenal di Indonesia, di antaranya adalah:
*         Minyak tanah rumah tangga
*         Minyak tanah industri
*         Pertamax Racing
*         Pertamax
*         Pertamax Plus
*         Premium
*         Bio Premium
*         Bio Solar
*         Pertamina DEX
*         Solar transportasi
*         Solar industri
*         Minyak diesel
*         Minyak bakar
Di Indonesia, harga BBM sering mengalami kenaikan disebabkan alasan pemerintah yang ingin mengurangi subsidi. Tujuan dari pengurangan tersebut dikatakan adalah agar dana yang sebelumnya digunakan untuk subsidi dapat dialihkan untuk hal-hal lain seperti pendidikan dan pembangunan infrastruktur. Di sisi lain, kenaikan tersebut sering memicu terjadinya kenaikan pada harga barang-barang lainnya seperti barang konsumen, sembako dan bisa juga tarif listrik sehingga selalu ditentang masyarakat.

Sejarah

Artikel utama untuk bagian ini adalah: Sejarah minyak Bumi

Pengeboran minyak di Okemah, Oklahoma, 1922.
Minyak Bumi telah digunakan oleh manusia sejak zaman kuno, dan sampai saat ini masih merupakan komoditas yang penting. Minyak Bumi menjadi bahan bakar utama setelah ditemukannya mesin pembakaran dalam, semakin majunya penerbangan komersial, dan meningkatnya penggunaan plastik.
Lebih dari 4000 tahun yang lalu, menurut Herodotus dan Diodorus Siculus, aspal telah digunakan sebagai konstruksi dari tembok dan menara Babylon; ada banyak lubang-lubang minyak di dekat Ardericca (dekat Babylon).[17] Jumlah minyak yang besar ditemukan di tepi Sungai Issus, salah satu anak sungai dari Sungai Eufrat. Tablet-tablet dari Kerajaan Persia Kuno menunjukkan bahwa kebutuhan obat-obatan dan penerangan untuk kalangan menengah-atas menggunakan minyak Bumi. Pada tahun 347, minyak diproduksi daqri sumur yang digali dengan bambu di China.
Pada tahun 1850-an, Ignacy Łukasiewicz menemukan bagaimana proses untuk mendistilasi minyak tanah dari minyak Bumi, sehingga memberikan alternatif yang lebih murah daripada harus menggunakan minyak paus. Maka, dengan segera, pemakaian minyak Bumi untuk keperluan penerangan melonjak drastis di Amerika Utara.[19] Sumur minyak komersial pertama di dunia yang digali terletak di Polandia pada tahun 1853. Pengeboran minyak kemudian berkembang sangat cepat di banyak belahan dunia lainnya, terutama saat Kerajaan Rusia berkuasa. Perusahaan Branobel yang berpusat di Azerbaijan menguasai produksi minyak dunia pada akhir abad ke-19.

Industri minyak mentah



Artikel utama untuk bagian ini adalah: Industri minyak Bumi
Hal-hal yang termasuk di dalam industri minyak mentah adalah proses eksplorasi, ekstraksi, pengilangan, dan transportasi (yang biasanya diangkut dengan kapal tanker dan jalur pipa). Volume terbesar dari industri ini adalah bahan bakar minyak dan bensin. Minyak Bumi juga merupakan bahan bakar utama dalam pembuatan produk kimia lainnya, termasuk obat-obatan, pelarut, pupuk, pestisida, dan plastik. Industri ini biasanya terbagi menjadi 3 komponen besar: upstream, midstream dan downstream.
industri, dan sangat penting untuk menjaga peradaban manusia di jaman industrialisasi ini, sehingga minyak Bumi ini menjadi perhatian serius bagi banyak pemerintahan di banyak negara. Saat ini minyak Bumi masih menjadi sumber energi terbesar di banyak kawasan di dunia, dengan persentase bervariasi mulai dari yang terendah 32% di Eropa dan Asia, sampai yang paling tertinggi di Timur Tengah, yaitu mencapai 53%. Di kawasan lainnya, persentase pemakaian minyak Bumi sebagai sumber energi untuk Amerika Selatan dan Tengah mencapai 44%, Afrika 41%, dan Amerika Utara 40%. Saat ini dunia mengkonsumsi 30 juta barrel (4.8 km³) minyak per tahunnya, dan pengkonsumsi minyak terbesar tetaplah negara-negara maju. Menurut data, Amerika Serikat saja mengkonsumsi 24% konsumsi minyak dunia pada tahun 2004, meskipun di tahun 2007 persentasenya turun menjadi 21%.

 

Minyak Bumi berdasarkan negara

Statistik konsumsi


*       
Emisi karbon global, indikator dari konsumsi minyak mentah dari tahun 1800-2007. Untuk keseluruhan, warnanya hitam, sedangkan untuk minyak saja warna biru.
*       
Proyeksi penggunaan energi, oleh EIA
*       
Konsumsi minyak mentah per harinya, dari tahun 1980 to 2006
*       
konsumsi minyak Bumi berdasarkan persentase wilayah dari tahun 1980-2006: merah=Amerika Serikat, biru=Eropa, kuning=Asia+Oseania

*      
Konsumsi minyak mentah tahun 2010 di dunia dan berdasarkan wilayah. Global Energy Statistical Yearbook 2011


Produksi






Negara-negara produsen minyak Bumi


Grafik dari negara-negara produsen minyak utama dunia, 1960-2006, termasuk Uni Soviet
Dalam industri minyak mentah, yang dimaksud dengan produksi adalah seberapa banyak minyak mentah yang berhasil diekstraksi.
#
Negara produsen
103bbl/hari (2006)
103bbl/hari (2007)
103bbl/hari (2008)
103bbl/hari (2009)
Pangsa pasar
1
Arab Saudi (OPEC)
10.665
10.234
10.782
9.760
11,8%
2
9.677
9.876
9.789
9.934
12,0%
3
8.331
8.481
8.514
9.141
11,1%
4
Iran (OPEC)
4.148
4.043
4.174
4.177
5,1%
5
3.846
3.901
3.973
3.996
4,8%
6
3.288
3.358
3.350
3.294
4,0%
7
3.707
3.501
3.185
3.001
3,6%
8
2.945
2.948
3.046
2.795
3,4%
9
Kuwait (OPEC)
2.675
2.613
2.742
2.496
3,0%
10
Venezuela (OPEC) 1
2.803
2.667
2.643
2.471
3,0%
11
2.786
2.565
2.466
2.350
2,8%
12
2.166
2.279
2.401
2.577
3,1%
13
Irak (OPEC) 3
2.008
2.094
2.385
2.400
2,9%
14
Aljazair (OPEC)
2.122
2.173
2.179
2.126
2,6%
15
Nigeria (OPEC)
2.443
2.352
2.169
2.211
2,7%
16
Angola (OPEC)
1.435
1.769
2.014
1.948
2,4%
17
Libya (OPEC)
1.809
1.845
1.875
1.789
2,2%
18
1.689
1.690
1.584
1.422
1,7%
19
1.388
1.445
1.429
1.540
1,9%
20
Qatar (OPEC)
1.141
1.136
1.207
1.213
1,5%
21
1.102
1.044
1.051
1.023
1,2%
22
854
881
884
877
1,1%
23
648
850
875
1.012
1,2%
24
802
791
792
794
1,0%
25
743
714
761
816
1,0%
26
729
703
727
693
0,8%
27
667
664
631
678
0,8%
28
544
543
601
686
0,8%
29
552
595
586
588
0,7%
30
Ekuador (OPEC)
536
512
505
485
0,6%
31
380
466
480
486
0,6%
32
449
446
426
400
0,5%
33
386
400
359
346
0,4%
34
334
349
361
339
0,4%
35
362
352
314
346
0,4%
36
377
361
300
287
0,3%
37
344
314
289
262
0,3%
38
237
244
248
242
0,3%
39
204
199
195
192
0,2%
40
Tidak ada data
180
189
198
0,2%
1 Masa produksi minyak maksimum sudah lewat di negara-negara ini
2 Meski produksi minyak Kanada turun, tapi total produksi minyak tetap tumbuh karena produksi pasir minyak masih meningkat. Jika pasir minyak dimasukkan, Kanada mempunyai cadangan minyak terbesar kedua setelah Arab Saudi.
3 Meskipun masih tercatat sebagai anggota, tapi Irak sudah tidak dimasukkan dalam total produksi sejak 1998.

Konsumsi

Menurut CIA World Factbook, konsumsi minyak Bumi di dunia pada tahun 2010 adalah 87 juta barel minyak per harinya.
http://upload.wikimedia.org/wikipedia/commons/thumb/9/9a/OilConsumptionpercapita.png/550px-OilConsumptionpercapita.png

Konsumsi minyak per kapita (warna lebih gelap berarti konsumsinya lebih besar).
Tabel ini berisi tentang berapa banyak minyak mentah yang dikonsumsi tiap harinya pada tahun 2008 dalam satuan ribu barrel (bbl) dan ribu meter kubik (m3)
Konsumsi pada tahun 2008
(1000 bbl/hari)
(1000 m3/hari)
populasi penduduk (juta)
10 bbl/tahun per kapita
10 m3/tahun per kapita
19.497,95
3,099.9
314
226
35.9
7.831,00
1,245.0
1345
21
3.3
4.784,85
760.7
127
137
21.8
2.962,00
470.9
1198
09
1.4
2.916,00
463.6
140
76
12.1
2.569,28
408.5
82
114
18.1
2.485,00
395.1
193
47
7.5
2.376,00
377.8
25
337
53.6
2.261,36
359.5
33
246
39.1
2.174,91
345.8
48
164
26.1
2.128,46
338.4
109
71
11.3
1.986,26
315.8
62
116
18.4
1.741,00
276.8
74
86
13.7
1.709,66
271.8
61
101
16.1
1.639,01
260.6
60
10
1.6
Data populasi:
1 Masa puncak produksi minyak sudah terlewati di negara-negara ini
2 Negara ini bukanlah produsen minyak utama

Ekspor

Lihat pula: Eksportir minyak mentah dan OPEC

Para negara pengekportir minyak.
Ekspor minyak mentah bersih antara tahun 2006-2009 dalam ribu bbl/hari dan ribu m³/d:
#
Negara pengekspor
103bbl/hari (2009)
103m3/hari (2009)
103bbl/hari (2006)
103m3/hari (2006)
1
7.322
1.164
8.651
1.376
2
7.194
1.144
6.565
1.044
3
Iran (OPEC)
2.486
395
2.519
401
4
2.303
366
2.515
400
5
2.132
339
2.542
404
6
Kuwait (OPEC)
2.124
338
2.150
342
7
Nigeria (OPEC)
1.939
308
2.146
341
8
Angola (OPEC)
1.878
299
1.363
217
9
Aljazair (OPEC) 1
1.767
281
1.847
297
10
Irak (OPEC)
1.764
280
1.438
229
11
Venezuela (OPEC) 1
1.748
278
2.203
350
12
Libya (OPEC) 1
1.525
242
1.525
242
13
1.299
207
1.114
177
14
1.168
187
1.071
170
15
Qatar (OPEC)
1.066
169
-
-
-
1.039
165
1.676
266
1 Masa produksi minyak maksimum sudah terlewati di negara ini
2 Statistik untuk Kanada sangatlah kompleks karena nyatanya negara ini adalah eksportir dan importir minyak sekaligus. Negara ini juga banyak sekali melakukan pengilangan untuk minyak-minyak yang dipasarkan di pasar Amerika Serikat. Kanada merupakan eksportir minyak utama ke AS, dengan rata-rata impor sekitar 2.500.000 barel/hari (400.000 m3/hari) bulan Agustus 2007.
Total produksi/konsumsi dunia pada tahun 2005 diperkirakan sekitar 84 juta barel per harinya (13.400.000 m3/d).

Impor

http://upload.wikimedia.org/wikipedia/commons/thumb/d/db/Oil_imports.PNG/550px-Oil_imports.PNG

Impor minyak mentah berdasarkan negara.
Negara importir minyak mentah terbesar, dari tahun 2006 sampai 2009 dalam ribu bbl/hari dan ribu m³/d:
#
Negara pengimpor
103bbl/hari (2009)
103m3/hari (2009)
103bbl/hari (2006)
103m3/hari (2006)
1
Amerika Serikat 1
9.631
1.531
12.220
1.943
2
China 2
4.328
688
3.438
547
3
Jepang
4.235
673
5.097
810
4
Jerman
2.323
369
2.483
395
5
India
2.233
355
1.687
268
6
Korea Selatan
2.139
340
2.150
342
7
Perancis
1.749
278
1.893
301
8
Britania Raya
1.588
252
-
-
9
Spanyol
1.439
229
1.555
247
10
Italia
1.381
220
1.558
248
11
Belanda
973
155
936
149
12
Republik Cina (Taiwan)
944
150
942
150
13
Singapora
916
146
787
125
14
Turki
650
103
576
92
15
Belgia
597
95
546
87
-
Thailand
538
86
606
96
1 Masa produksi minyak maksimum sudah terlewati di negara ini[rujukan?]
2 Produsem minyak utama yang jumlah produksinya masih bisa meningkat[rujukan?]

Konsumen minyak mentah tapi tidak memproduksi

Negara-negara yang produksi minyaknya kurang atau sama dengan 10% dari jumlah konsumsinya.
#
Negara konsumen
(bbl/hari)
(m³/hari)
1
Jepang
5.578.000
886.831
2
Jerman
2.677.000
425.609
3
Korea Selatan
2.061.000
327.673
4
Perancis
2.060.000
327,514
5
Italia
1.874.000
297.942
6
Spanyol
1.537.000
244.363
7
Belanda
946.700
150.513
8
Turki
575.011
91.663

Efek pada lingkungan

http://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Dieselrainbow.jpg/220px-Dieselrainbow.jpg

Tumpahan minyak diesel di jalan
Artikel utama untuk bagian ini adalah: Masalah lingkungan dengan minyak Bumi
Karena minyak Bumi adalah substansi yang berasal dari alam, maka kehadirannya di lingkungan tidak perlu berasal dari aktivitas rutin atau kesalahan manusia (Misalnya dari pengeboran, ekstraksi, pengilangan, dan pembakaran). Fenomena alam seperti perembesan minyak dan tar pit adalah bukti bahwa minyak Bumi bisa ada secara natural.

Pemanasan global

Ketika dibakar, maka minyak Bumi akan menghasilkan karbon dioksida, salah satu gas rumah kaca. Bersamaan dengan pembakaran batu bara, pembakaran minyak Bumi adalah penyumbang bertambahnya CO2 do atmosfer. Jumlah CO2 ini meningkat dengan cepat di udara semenjak adanya revolusi industri, sehingga saat ini levelnya mencapai lebih dari 380ppmv, dari sebelumnya yang hanya 180-300ppmv, sehingga muncullah pemanasan global.

Ekstraksi

Ekstraksi minyak adalah proses pemindahan minyak dari sumur minyak. Minyak Bumi biasanya diangkat ke Bumi dalam bentuk emulsi minyak-air, dan digunakan senyawa kimia khusus yang namanya demulsifier untuk memisahkan air dan minyaknya. Ekstraksi minyak ongkosnya mahal dan terkadang merusak lingkungan. Eksplorasi dan ekstraksi minyak lepas pantai akan mengganggu keseimbangan lingkungan di lautan.[32]

Masa depan bagi produksi minyak Bumi

Konsumsi minyak Bumi pada abad ke-20 dan abad ke-21 bertambah seiring dengan tumbuhnya penjualan kendaraan. Penjualan mobil ramah lingkungan pun meningkat semenjak harga minyak yang merangkak naik di tahun 1980-an di negara-negara OECD. Pada tahun 2008, adanya krisis ekonomi agaknya sedikit memukul penjualan kendaraan, tapi konsumsi minyak Bumi tetap meningkat tipis. Neagra-negara BRIC agaknya juga mulai menyumbang pemanasan global, seperti China yang sudah menjadi pasar mobil terbesar di dunia sejak tahun 2009.








Gas alam


Produksi gas alam dunia, warna coklat adalah produksi terbesar, diikuti warna merah
Gas alam sering juga disebut sebagai gas Bumi atau gas rawa, adalah bahan bakar fosil berbentuk gas yang terutama terdiri dari metana CH4). Ia dapat ditemukan di ladang minyak, ladang gas Bumi dan juga tambang batu bara. Ketika gas yang kaya dengan metana diproduksi melalui pembusukan oleh bakteri anaerobik dari bahan-bahan organik selain dari fosil, maka ia disebut biogas. Sumber biogas dapat ditemukan di rawa-rawa, tempat pembuangan akhir sampah, serta penampungan kotoran manusia dan hewan.

Komposisi kimia

Komponen utama dalam gas alam adalah metana (CH4), yang merupakan molekul hidrokarbon rantai terpendek dan teringan. Gas alam juga mengandung molekul-molekul hidrokarbon yang lebih berat seperti etana (C2H6), propana (C3H8) dan butana (C4H10), selain juga gas-gas yang mengandung sulfur (belerang). Gas alam juga merupakan sumber utama untuk sumber gas helium.
Metana adalah gas rumah kaca yang dapat menciptakan pemanasan global ketika terlepas ke atmosfer, dan umumnya dianggap sebagai polutan ketimbang sumber energi yang berguna. Meskipun begitu, metana di atmosfer bereaksi dengan ozon, memproduksi karbon dioksida dan air, sehingga efek rumah kaca dari metana yang terlepas ke udara relatif hanya berlangsung sesaat. Sumber metana yang berasal dari makhluk hidup kebanyakan berasal dari rayap, ternak (mamalia) dan pertanian (diperkirakan kadar emisinya sekitar 15, 75 dan 100 juta ton per tahun secara berturut-turut).
Komponen
%
Metana (CH4)
80-95
Etana (C2H6)
5-15
Propana (C3H8) and Butane (C4H10)
< 5
Nitrogen, helium, karbon dioksida (CO2), hidrogen sulfida (H2S), dan air dapat juga terkandung di dalam gas alam. Merkuri dapat juga terkandung dalam jumlah kecil. Komposisi gas alam bervariasi sesuai dengan sumber ladang gasnya.
Campuran organosulfur dan hidrogen sulfida adalah kontaminan (pengotor) utama dari gas yang harus dipisahkan . Gas dengan jumlah pengotor sulfur yang signifikan dinamakan sour gas dan sering disebut juga sebagai "acid gas (gas asam)". Gas alam yang telah diproses dan akan dijual bersifat tidak berasa dan tidak berbau. Akan tetapi, sebelum gas tersebut didistribusikan ke pengguna akhir, biasanya gas tersebut diberi bau dengan menambahkan thiol, agar dapat terdeteksi bila terjadi kebocoran gas. Gas alam yang telah diproses itu sendiri sebenarnya tidak berbahaya, akan tetapi gas alam tanpa proses dapat menyebabkan tercekiknya pernapasan karena ia dapat mengurangi kandungan oksigen di udara pada level yang dapat membahayakan.
Gas alam dapat berbahaya karena sifatnya yang sangat mudah terbakar dan menimbulkan ledakan. Gas alam lebih ringan dari udara, sehingga cenderung mudah tersebar di atmosfer. Akan tetapi bila ia berada dalam ruang tertutup, seperti dalam rumah, konsentrasi gas dapat mencapai titik campuran yang mudah meledak, yang jika tersulut api, dapat menyebabkan ledakan yang dapat menghancurkan bangunan. Kandungan metana yang berbahaya di udara adalah antara 5% hingga 15%.
Ledakan untuk gas alam terkompresi di kendaraan, umumnya tidak mengkhawatirkan karena sifatnya yang lebih ringan, dan konsentrasi yang di luar rentang 5 - 15% yang dapat menimbulkan ledakan.

Kandungan energi

Pembakaran satu meter kubik gas alam komersial menghasilkan 38 MJ (10.6 kWh).

Peyimpanan dan transportasi gas alam

Polyethylene gas main being laid in a trench.
Metode penyimpanan gas alam dilakukan dengan "Natural Gas Underground Storage", yakni suatu ruangan raksasa di bawah tanah yang lazim disebut sebagai "salt dome" yakni kubah-kubah di bawah tanah yang terjadi dari reservoir sumber-sumber gas alam yang telah depleted. Hal ini sangat tepat untuk negeri 4 musim. Pada musim panas saat pemakaian gas untuk pemanas jauh berkurang (low demand), gas alam diinjeksikan melalui kompresor-kompresor gas kedalam kubah di dalam tanah tersebut. Pada musim dingin, dimana terjadi kebutuhan yang sangat signifikan, gas alam yang disimpan di dalam kubah bawah tanah dikeluarkan untuk disalurkan kepada konsumen yang membutuhkan. Bagi perusahaan (operator) penyedia gas alam, cara ini sangat membantu untuk menjaga stabilitas operasional pasokan gas alam melalui jaringan pipa gas alam.
Pada dasarnya sistem transportasi gas alam meliputi :
*       Transportasi melalui pipa salur.
*       Transportasi dalam bentuk Liquefied Natural Gas (LNG) dengan kapal tanker LNG untuk pengangkutan jarak jauh.

*       Transportasi dalam bentuk Compressed Natural Gas (CNG), baik di daratan dengan road tanker maupun dengan kapal tanker CNG di laut, untuk jarak dekat dan menengah (antar pulau).
Di Indonesia, Badan Pengatur Hilir Migas (BPH Hilir Migas) telah menyusun Master Plan "Sistem Jaringan Induk Transmisi Gas Nasional Terpadu". Dalam waktu yang tidak lama lagi sistem jaringan pipa gas alam akan membentang sambung menyambung dari Nang roe Aceh Darussalam-Sumatera Utara-Sumatera Tengah-Sumatera Selatan-Jawa-Sulawesi dan Kalimantan. Saat ini jaringan pipa gas di Indonesia dimiliki oleh PERTAMINA dan PGN dan masih terlokalisir terpisah-pisah pada daerah-daerah tertentu, misalnya di Sumatera Utara, Sumatera Tengah, Sumatera Selatan, Jawa Barat, Jawa Timur dan Kalimantan Timur.
Carrier LNG dapat digunakan untuk mentransportasi gas alam cair (liquefied natural gas, LNG) menyebrangi samudra, sedangkan truk tangki dapat membawa gasa alam cair atau gas alam terkompresi (compressed natural gas, CNG) dalam jarak dekat. Mereka dapat mentransportasi gas alam secara langsung ke pengguna-akhir atau ke titik distribusi, seperti jalur pipa untuk transportasi lebih lanjut. Hal ini masih membutuhkan biaya yang besar untuk fasilitas tambahan untuk pencairan gas atau kompresi di titik produksi, dan penggasan atau dekompresi di titik pengguna-akhir atau ke jalur pipa.

Pemanfaatan Gas Alam

Secara garis besar pemanfaatan gas alam dibagi atas 3 kelompok yaitu :
*       Gas alam sebagai bahan bakar, antara lain sebagai bahan bakar Pembangkit Listrik Tenaga Gas/Uap, bahan bakar industri ringan, menengah dan berat, bahan bakar kendaraan bermotor (BBG/NGV), sebagai gas kota untuk kebutuhan rumah tangga hotel, restoran dan sebagainya.
*       Gas alam sebagai bahan baku, antara lain bahan baku pabrik pupuk, petrokimia, metanol, bahan baku plastik (LDPE = low density polyethylene, LLDPE = linear low density polyethylene, HDPE = high density polyethylen, PE= poly ethylene, PVC=poly vinyl chloride, C3 dan C4-nya untuk LPG, CO2-nya untuk soft drink, dry ice pengawet makanan, hujan buatan, industri besi tuang, pengelasan dan bahan pemadam api ringan.
*       Gas alam sebagai komoditas energi untuk ekspor, yakni Liquefied Natural Gas (LNG.
Teknologi mutakhir juga telah dapat memanfaatkan gas alam untuk air conditioner (AC=penyejuk udara), seperti yang digunakan di bandara Bangkok, Thailand dan beberapa bangunan gedung perguruan tinggi di Australia.

Gas alam di Indonesia

Pemanfaatan gas alam di Indonesia dimulai pada tahun 1960-an dimana produksi gas alam dari ladang gas alam PT Stanvac Indonesia di Pendopo, Sumatera Selatan dikirim melalui pipa gas ke pabrik pupuk Pusri IA, PT Pupuk Sriwidjaja di Palembang. Perkembangan pemanfaatan gas alam di Indonesia meningkat pesat sejak tahun 1974, dimana PERTAMINA mulai memasok gas alam melalui pipa gas dari ladang gas alam di Prabumulih, Sumatera Selatan ke pabrik pupuk Pusri II, Pusri III dan Pusri IV di Palembang. Karena sudah terlalu tua dan tidak efisien, pada tahun 1993 Pusri IA ditutup,dan digantikan oleh Pusri IB yang dibangun oleh putera-puteri bangsa Indonesia sendiri. Pada masa itu Pusri IB merupakan pabrik pupuk paling modern di kawasan Asia, karena menggunakan teknologi tinggi. Di Jawa Barat, pada waktu yang bersamaan, 1974, PERTAMINA juga memasok gas alam melalui pipa gas dari ladang gas alam di lepas pantai (off shore) laut Jawa dan kawasan Cirebon untuk pabrik pupuk dan industri menengah dan berat di kawasan Jawa Barat dan Cilegon Banten. Pipa gas alam yang membentang dari kawasan Cirebon menuju Cilegon, Banten memasok gas alam antara lain ke pabrik semen, pabrik pupuk, pabrik keramik, pabrik baja dan pembangkit listrik tenaga gas dan uap.
Selain untuk kebutuhan dalam negeri, gas alam di Indonesia juga di ekspor dalam bentuk LNG (Liquefied Natural Gas)
Salah satu daerah penghasil gas alam terbesar di Indonesia adalah Nanggröe Aceh Darussalam. Sumber gas alam yang terdapat di daerah Kota Lhokseumawe dikelola oleh PT Arun NGL Company. Gas alam telah diproduksikan sejak tahun 1979 dan diekspor ke Jepang dan Korea Selatan. Selain itu di Krueng Geukuh, Nanggröe Aceh Barôh (kabupaten Aceh Utara) juga terdapat PT Pupuk Iskandar Muda pabrik pupuk urea, dengan bahan baku dari gas alam.

Cadangan gas dunia

Total cadangan dunia (yang sudah dikonfirmasi) adalah 6,112 triliun kaki persegi. Daftar 20 besar negara dengan cadangan gas terbesar dalam satuan triliun kaki persegi (trillion cu ft) adalah:

  1. Rusia =1,680
  2. Iran =971
  3. Qatar =911
  4. Arab Saudi =241
  5. United Arab Emirates =214
  6. Amerika Serikat =193
  7. Nigeria =185
  8. Aljazair =161
  9. Venezuela =151
  10. Irak =112
  11. Indonesia =98
  12. Norwegia =84
  13. Malaysia =75
  14. Turkmenistan =71
  15. Uzbekistan =66
  16. Kazakhstan =65
  17. Belanda =62
  18. Mesir =59
  19. Kanada =57
  20. Kuwait =56
Total cadangan 20 negara di atas adalah 5,510 triliun kaki persegi dan total cadangan negara-negara di luar 20 besar di atas adalah 602 triliun kaki persegi.
Daftar ladang gas terbesar dalam satuan (*109 m³):





























  1. Asalouyeh, South Pars Gas Field (10000 - 15000)
  2. Urengoy gas field (10000)
  3. Shtokman field (3200)
  4. Karachaganak field, Kazakhstan (1800)
  5. Slochteren (1500)
  6. Troll (1325)
  7. Greater Gorgon (1100)
  8. Shah Deniz gas field (800)
  9. Tangguh gas field , Indonesia (500)
  10. Sakhalin-I (485)
  11. Ormen Lange (400)
  12. Jonah Field (300)
  13. Snøhvit (140)
  14. Barnett Shale (60 - 900)
  15. Maui gas field (?)